Dariusz Kozak

Autonomiczny system kontroli dostępu

SmartKey

Wersja 3.2

Wyprodukowano w Polsce

 $\ensuremath{\textcircled{C}}$ 2023 Copyright by DK / DC-Tech

System SmartKey (SK) został zaprojektowany tak, aby maksymalnie uprościć jego budowę przy zachowaniu większości cech rozproszonych systemów stosowanych powszechnie w kontroli dostępu do pomieszczeń i budynków w odniesieniu do pojedynczego pomieszczenia / budynku / domu / szafki / skrytki / itp.

System obsługuje pojedyncze drzwi / bramę / furtę czy też schowek, skrytkę, sejf, itd., przy zastosowaniu zamka elektromechanicznego lub elektromagnetycznego.

W skład systemu wchodzi:

- aplikacja SLock
- kontroler SmartKey
- czytnik kart / kluczy RFID NTAG
- zasilacz sieciowy
- buforowy kontroler zasilania

W najprostszej konfiguracji system zawiera kontroler SK oraz aplikację zarządzającą. Kontroler SK obsługuje:

- 16 klientów (urządzenia mobilne z systemem Android)
- 16 kluczy RFID typu NTAG (karty, breloki, naklejki)
- dwa poziomy klientów (administrator / użytkownik)
- zarządzanie klientami (dostęp)
- zarządzanie kluczami (programowanie / usuwanie /
- dostęp)
- 4 harmonogramy (klient / klucz)

1. Kontroler SmartKey

Rys. Kontroler SmartKey

- Przycisk serwisowy (SWS) odpowiada za wymuszanie trybów specjalnych urządzenia oraz wybór jednej z kilku konfiguracji sterownika
- LED (niebieska) sygnalizuje stan urządzenia (uruchamianie, tryb bootloader'a, aktywny tryb widoczności, tryb normalnej pracy)
- LED (czerwona) sygnalizuje poprawną autoryzację, tryb programowania lub usuwania klucza
- Gniazdo czytnika RFID umożliwia podłączenie przewodu czytnika kluczy zbliżeniowych (przewód max 1,5m – zalecany do 1 m)
- Złącze zasilania i sterujące wyprowadza na zewnątrz wszystkie niezbędne sygnały we/wy oraz doprowadza zasilanie urządzenia

2. Przygotowanie kontrolera do pracy

2.1 Parowanie z telefonem

Przed pierwszym użyciem musisz sparować urządzenie ze swoim telefonem. W tym celu:

- podłącz zasilanie +12V do urządzenia, włącz zasilanie i odczekaj 10 sek na uruchomienie urządzenia
- uruchom tryb parowania BT w urządzeniu (naciśnij i przytrzymaj 3 sek przycisk serwisowy aż zaświeci czerwona dioda LED)
- tryb widoczności trwa ok. 120 sek i zakończy się automatycznie (w tym czasie nie można się załogować do urządzenia)
- w czasie trwania trybu, wybierz z menu "Ustawienia" swojego telefonu "Bluetooth" i wyszukaj urządzenie "SmartKey"
- wprowadź kod parowania 00000000 i zatwierdź
- po zakończeniu trybu parowania uruchom aplikację SLock
- wybierz "Ustawienia"
- wybierz z listy "SmartKey"
- wprowadź kod PIN 0000 i kod ADM 00000000 i zatwierdź

 aplikacja połączy się i zaloguje do twojego urządzenia

2.2 Zamian kodów dostępu (obowiązkowe)

- po zalogowaniu wybierz w aplikacji ponownie "Ustawienia"
- zmień kody dostępu PIN, ADM i zatwierdź

2.3 Zmiana kodu parowania (obowiązkowe)

- po zmianie kodów dostępu wybierz ponownie "Ustawienia"
- zmień kod parowania PAR
- po zmianie tego kodu aplikacja zakończy automatycznie połączenie z urządzeniem a przy ponownym logowaniu zażąda podania nowego, zmienionego kodu parowania

Jeśli wprowadzisz błędny kod parowania urządzenie może zostać usunięte z listy urządzeń BT twojego telefonu, w takim przypadku wykonaj procedurę parowania opisaną w pkt. 2.1, kody dostępu PIN i ADM w tym przypadku nie ulegają zmianie:

- uruchom tryb parowania BT w urządzeniu (naciśnij i przytrzymaj 3 sek przycisk serwisowy – zaświeci czerwona dioda LED)
- tryb widoczności trwa ok. 120 sek
- w czasie trwania trybu, wybierz z menu "Ustawienia" swojego telefonu "Bluetooth" i wyszukaj urządzenie "SmartKey"
- Wprowadź właściwy kod parowania i zatwierdź
- Po zakończeniu trybu parowania uruchom aplikację SLock

3. Tryby specjalne (uruchamianie)

3.1 Awaryjny tryb Bootloader'a

W tym trybie możesz załadować do pamięci procesora urządzenia jego oprogramowanie układowe w sytuacji, gdy urządzenie nie uruchamia się po nieudanej aktualizacji z poziomu aplikacji. Ten tryb nie jest zwykle używany, lecz w przypadku braku możliwości uruchomienia urządzenia tryb awaryjny umożliwia ręczne wymuszenie wejścia do procedury bootloader'a i wgranie poprawnego pliku firmware.

(aplikacja):

- wyłącz zasilanie urządzenia
- uruchom aplikację SLock i wybierz połączenie z kontrolerem
- poczekaj na zakończenie procedury łączenia niepowodzeniem
- nie zamykaj aplikacji

(kontroler):

- naciśnij i przytrzymaj przycisk SWS
- włącz zasilanie kontrolera, nadal trzymając wciśnięty przycisk SWS
- poczekaj na sygnał 3 x krótki sygnał akustyczny / krótki błysk niebieskiej LED
- zwolnij przycisk SWS kontroler oczekuje na komendy bootloader'a

(aktualizacja firmware):

- w aplikacji wybierz kolejno menu "Informacje" a następnie przycisk "Firmware"
- wybierz przycisk "Połącz" i zaczekaj na połączenie
- wybierz przycisk "Aktualizuj"
- poczekaj na zakończenie procedury aktualizacji i wybierz "Zamknij"
- poczekaj ok. 10 sek na restart urządzenia
- zaloguj się normalnie z poziomu aplikacji

Uzyskasz dostęp z poziomu aplikacji do procedury firmware w trybie awaryjnym tylko wtedy, jeżeli twoje ostatnie poprawne logowanie do kontrolera było logowaniem z uprawnieniami administratora

3.2 Programowanie trybu zamka (A,B,C)

Ten tryb pozwala dopasować sposób sterowania wyjściem Z (długość, liczba i polaryzacja impulsów) do obsługiwanego zamka.

 Tryb A – zamek elektromechaniczny, dwubiegowy. Otwarcie za pomocą impulsu 0,5 sek, zamknięcie impuls 0,5 sek o przeciwnej polaryzacji

- Tryb B zamek elektromagnetyczny. Otwarcie za pomocą impulsu 0,5 sek, bez zamiany polaryzacji (zamek z odbojnikiem, szafkowy)
- Tryb C zamek elektromagnetyczny. Otwarcie za pomocą impulsu 5 sek, bez zamiany polaryzacji (zaczep, zwora elektromagnetyczna)

(kontroler):

- zamknij aplikację SLock i wyłącz zasilanie urządzenia
- naciśnij i przytrzymaj przycisk SWS
- włącz zasilanie kontrolera, nadal trzymając wciśnięty przycisk SWS
- poczekaj na sygnał 3 x krótki błysk niebieskiej LED / krótki sygnał akustyczny
- trzymaj nadal wciśnięty przycisk SWS
- poczekaj na sygnał 1 x krótki błysk niebieskiej LED / krótki sygnał akustyczny
- zwolnij przycisk SWS
- czerwona dioda LED oraz sygnał akustyczny określą który tryb zamka jest aktywny:
 - tryb A 1 x krótki błysk czerwonej LED / sygnał akustyczny
 - tryb B 2 x krótki błysk czerwonej LED / sygnał akustyczny
- tryb C 3 x krótki błysk czerwonej LED / sygnał akustyczny
- naciskając krótko przycisk serwisowy wybierasz kolejno pomiędzy trybami A,B,C
- zwolnij przycisk, po 10 sek tryb zostanie zapamiętany a kontroler rozpocznie normalną pracę

Rys. Tryby pracy zamka kontrolera SmartKey

Czas t_{auto-lock} jest opóźnieniem automatycznego zamknięcia zamka po jego otwarciu i wynosi 30 sek (bez impulsu na wejściu SW1) lub 5 sek (po wykryciu sygnału masy na wejściu SW1). Dzięki synchronizacji z sygnałem SW1 zamek jest blokowany automatycznie po 5 sek od chwili otwarcia drzwi lub po 30 sek, jeśli drzwi nie zostały otwarte. Dotyczy tylko trybu C i zamka dwubiegowego, elektromechanicznego przy jednoczesnym wykorzystaniu wejścia SW1 jako sensor otwarcia drzwi.

3.3 Reset "twardy" (ustawienia fabryczne)

Przywrócenie ustawień fabrycznych powoduje wyczyszczenie listy sparowanych urządzeń w pamięci wewnętrznego modułu bluetooth, wyzerowanie kodu parowania (00000000), kodu PIN (0000) oraz ADM (00000000) a także usunięcie z pamięci kontrolera wszystkich identyfikatorów klientów oraz wyzerowania dziennika zdarzeń. Po tej operacji, przy pierwszym logowaniu system zażąda kodu parowania, należy wprowadzić domyślny kod PAR (0000000) a po poprawnym zalogowaniu należy w menu "Ustawienia" zmienić kody PIN, ADM oraz kod PAR. Procedura postępowania jest taka jak przy pierwszym logowaniu opisanym w pkt.2.

(kontroler):

- zamknij aplikację SLock i wyłącz zasilanie urządzenia
- naciśnij i przytrzymaj przycisk SWS
- włącz zasilanie kontrolera, nadal trzymając wciśnięty przycisk SWS
- poczekaj na sygnał 3 x krótki błysk niebieskiej LED / krótki sygnał akustyczny
- trzymaj nadal wciśnięty przycisk SWS
- poczekaj na sygnał 1 x krótki błysk niebieskiej LED / krótki sygnał akustyczny
- trzymaj nadal wciśnięty przycisk SWS
- poczekaj na sygnał 1 x długi błysk niebieskiej LED / długi sygnał akustyczny
- zwolnij przycisk SWS
- poczekaj ok. 10 sek na restart urządzenia i rozpoczęcie normalnej pracy

(aplikacja):

- uruchom aplikację i zaloguj się do urządzenia
- system twojego telefonu zażąda nowego kodu parowania
- wprowadź nowy kod parowania (PAR:0000000)
- po zalogowaniu wybierz menu "Ustawienia"
- zmień kody dostępu PIN, ADM i zatwierdź
- po zmianie kodów dostępu wybierz ponownie "Ustawienia"
- zmień kod parowania PAR
- po zmianie tego kodu aplikacja zakończy automatycznie połączenie z urządzeniem a przy ponownym logowaniu zażąda podania nowego, zmienionego kodu parowania
- teraz możesz się logować w normalny sposób

Zawsze zmieniaj domyślne kody PIN, ADM i PAR po przywróceniu ustawień fabrycznych

4. Tryby specjalne (normalna praca)

4.1 Tryb widoczność BT

W tym trybie kontroler jest widoczny dla wszystkich w sieci bluetooth przez 120 sek. Ten tryb jest wykorzystywany do parowania kontrolera z nowym klientem.

(kontroler):

- naciśnij i przytrzymaj przycisk serwisowy (przez ok. 3 sek)
- poczekaj aż zaświeci czerwona dioda LED
- tryb widoczności trwa ok. 120 sek i zakończy się automatycznie
- wejdź w ustawienia telefonu -> bluetooth -> szukaj
- wybierz z listy urządzeń "SmartKey"
- wprowadź kod parowania i zatwierdź
- zaczekaj na wyjście z procedury (dioda LED zgaśnie)

W czasie aktywnego "trybu widoczności BT" nie uzyskasz dostępu do urządzenia poprzez aplikację SLock aż do jego zakończenia. Tryb ten zakończy się automatycznie po ok. 120 sek.

4.2 Reset "miękki"

Ten tryb powoduje restart kontrolera SK bez zmian w pamięci i rejestrach

(kontroler):

- naciśnij krótko przycisk serwisowy
- zaczekaj na ponowne uruchomienie urządzenia

5. Czytnik kluczy FRID

5.1. Montaż czytnika

Czytnik połączony jest z kontrolerem magistralą o dużej przepustowości, lecz ograniczonej długości. Zalecana długość wynosi do 1 m, maksymalna 1,5 m (przy użyciu przewodu domofonowego). W przypadku skracania przewodu lub potrzeby jego przeprowadzenia przez małe otwory należy uciąć końcówkę z wtyczką. Po zainstalowaniu czytnika i przeprowadzeniu przewodu należy zamocować na jego końcu wtyk RJ45 używając standardowej zagniatarki do tych złącz.

Kolejność przewodów wg nr styków wtyczki RJ-45 pokazano na poniższym rysunku

Wtyk czytnika RFID (RJ45) (widok od strony styków)

Rys. Kolejność przewodów wg koloru – wtyk RJ45

- 1 czerwony
- 2 (brak)
- 3 szary
- 4 biały
- 5 zielony
- 6 żółty
- 7 fioletowy
- 8 niebieski

Montaż czytnika sprowadza się do przygotowania na powierzchni montażu kanału do przeprowadzenia przewodu oraz dwóch otworów montażowych (w zależności od powierzchni – wkręty do drewna lub kołki rozporowe)

Powierzchnia montażu

Rys. Sposób montażu czytnika na powierzchni ściany

Czytnika nie należy mocować bezpośrednio na i w pobliżu metalowych powierzchni.

Czytnik posiada sygnalizację optyczną, która jest sprzężona z diodą LED na kontrolerze sygnalizującą dostęp.

5.2. Zasady bezpieczeństwa kluczy RFID

Algorytm obsługujący czytnik, ze względów bezpieczeństwa został przygotowany tak, aby wyeliminować ewentualne próby użycia nieautoryzowanych (klonowanych, podrabianych) kluczy RFID. Jeżeli w zasięgu czytnika znajdzie się podrobiony klucz, którego numer seryjny zgadza się z tym zapisanym w pamięci kontrolera i jest to pierwsza próba klucz włamywacza nie będzie mógł odpowiedzieć na żądanie autoryzacji przez kontroler, jednak teoretycznie wykorzystując transmisję i dokonując ponownego ataku na ten sam klucz włamywacz mógłby uzyskać prawidłową odpowiedź legalnego klucza uzyskując w ten sposób zestaw haseł. Choć wymagałoby to dwukrotnego ataku na klucz właściciela oraz zaawansowanego sprzętu to taka sytuacja mało, ale jednak prawdopodobna musiała zostać wyeliminowana w algorytmie autoryzacji.

Z tego też powodu autoryzacja musi być poprawna za pierwszym razem, w przeciwnym wypadku klucz jest blokowany i umieszczany na "czarnej liście" a ponieważ każdy klucz w momencie przypisania do systemu otrzymuje zestaw losowych haseł, więc pozostałe klucze są bezpieczne.

Ceną takiej polityki bezpieczeństwa jest możliwość nieumyślnego zablokowania klucza przez samego właściciela, w przypadku przerwania autoryzacji, (np. klucz upadł, znajduje się na granicy pola czytnika lub jest przyłożony niedokładnie). Aby temu zaradzić algorytm w przypadku niepowodzenia autoryzacji ponawia próbę autoryzacji do 10 razy z interwałem 500ms, co umożliwia ponowne poprawne przyłożenie klucza i autoryzację a jednocześnie uniemożliwia podwójny atak na klucz właściciela i nieautoryzowany dostęp, ponieważ po upływie tych 5 sek klucz, który nie został poprawnie autoryzowany jest blokowany na stałe.

Oczywiście, jak każdy klucz (karta) zbliżeniowy obowiązują te same zasady bezpieczeństwa, co w przypadku kart płatniczych – należy przechowywać i używać ich tak, aby zminimalizować ryzyko zdalnego odczytu oraz zwracać uwagę czy przy czytniku nie "zamontowano" jakiś dodatkowych urządzeń.

Dla bezpieczeństwa zasięg czytnika wynosi ok. 3-4 cm, co należy uwzględnić podczas używanie kluczy.

Zasady bezpieczeństwa

- przykładaj klucz bezpośrednio do czytnika (mały zasięg)
- jeśli klucz nie zostanie natychmiast autoryzowany odsuń go i przyłóż ponownie (masz 10 sek)
- jeśli klucz upadnie ci w czasie autoryzacji podnieś go i natychmiast przyłóż do czytnika (masz 10 sek)
- zwróć uwagę na nietypowe urządzenia w pobliżu czytnika
- przechowuj klucz w miejscu tylko sobie znanym

 miej zawsze aktywną aplikację SLock w swoim telefonie (na wypadek zablokowania klucza, lub dodatkowy klucz)

Czytnik stanowi opcjonalne wyposażenie systemu i nie jest wymagany. Jego obecność lub brak jest rejestrowana w czasie startu systemu. Brak czytnika powoduje zablokowanie wszystkich opcji dotyczących kluczy RFID w aplikacji SLock, nadal możesz używać systemu uzyskując dostęp za pomocą smartfona z aplikacją SLock.

6. Złącze zasilania i sterujące

Wyprowadzenia poszczególnych sygnałów i zasilania prezentuje poniższy rysunek.

Rys. Złącze zasilania i sterujące

Urządzenia wymaga zasilania napięcia 12 V – 13,5 V i wydajności prądowej zależnej od zastosowanego zamka, rygla, przekaźnika (max 750 mA). Masa została wyprowadzona na dwóch osobnych pinach złącza dla wygodnej instalacji.

Wejście zasilania oraz wyjście sterujące Z (+/-) zabezpieczone są bezpiecznikami polimerowymi.

- +12V zasilanie urządzenia, prąd stały 12-13,5V / max 1A
- GND masa zasilania (x2)
- SW1 wejście czujnika otwarcia drzwi. Sygnał ten informuje system o otwarciu drzwi, co umożliwia skrócenie czasu automatycznego zablokowania zamka (dla zamków

elektromechanicznych, dwubiegowych). Wejście NO – normalnie otwarte, aktywowane podaniem sygnału masy (opcjonalny)

- SW2 wejście przycisku zdalnego otwierania zamka, daje taki sam rezultat jak autoryzacja klucza RFID lub odblokowanie z poziomu aplikacji. Wejście NO – normalnie otwarte, aktywowane podaniem sygnału masy (opcjonalne)
- Z (+/-) obwód sterujący zamkiem, w przypadku zamków elektromechanicznych, dwubiegowych podaje dwa rodzaje impulsów przeciwnej polaryzacji, w przypadku pozostałych zamków jeden impuls o stałej polaryzacji. Tryb pracy (a więc i rodzaj zamka) jest programowany przez użytkownika, poprzez wybór jednego z trzech trybów A, B, C opisanych w sekcji 1.1.3 "Programowanie trybu zamka"

7. Zasilacz buforowy

Poniższy rysunek przedstawia schemat zasilacza

Rys. Wyprowadzenia zasilacza buforowego

Zasilacz buforowy jest wymagany w przypadku zasilania buforowego z sieci i akumulatora żelowego lub AGM. Zasilacz przełącza źródło zasilania pomiędzy zasilaczem sieciowym a akumulatorem płynnie i z zachowaniem ciągłości zasilania. Dodatkowo zasilacz ładuje akumulator a po osiągnięciu pełni naładowania utrzymuje akumulator w tym stanie prądem konserwującym. Zabezpieczenie akumulator stanowi szybki bezpiecznik topikowy 1.0 A

Zasilacz buforowy wymaga zasilacza sieciowego 15V/1A zaopatrzonego we wtyk 5.5/2.1 mm z plusem w środku. Zielona dioda LED sygnalizuje zasilanie sieciowe. Zasilacz nie posiada odcięcia zabezpieczającego przed nadmiernym wyładowaniem akumulatora, jednak ze względu na stosunkowo mały pobór prądu przez system SK a przez to długi czas pracy akumulatorowej (do 7 dni, przy baterii 12V/7Ah) nie stanowi to problemu przy sporadycznych przerwach w dostarczaniu energii z sieci energetycznej.

Linię zasilającą kontroler należy podłączyć do złącza zasilania urządzenia, przewód czerwony +12V, podobnie przewód dodatniego bieguna jest oznaczony czerwonym kolorem. Złącze akumulator jest zaopatrzone w konektory, dodatni biegun jest oznaczony białym konektorem. Zasilacz wyposażony jest w wewnętrzny polimerowy bezpiecznik 12V/1,2A.

Schemat połączeń obrazuje poniższy rysunek.

Rys. Schemat połączeń kompletnego systemu SmartKey z buforowaniem zasilania

Zasilacz buforowy stanowi opcjonalne wyposażenie i możesz zasilać kontroler z dowolnego innego źródła zasilania przestrzegając parametrów zasilania. Możesz również zastosować własny zasilacz buforowy wraz z akumulatorem z zastrzeżeniem jak wyżej, co do parametrów zasilania

8. Dane techniczne

Kontroler SmartKey

Parametr	Wartość
Napięcie zasilania	12 V - 15V
Max prąd zasilania	40 mA + prąd I _{out} (prąd wyjścia)
Pobór prądu	40 mA
Obciążenie wyjścia Z (I _{out})	500 mA (max.750 mA)
Typ bluetooth	Bluetooth V2.0 + EDR
Zasięg	10m
Ukrywanie BT	Tak
Zegar czasu rzeczywistego	Tak (zasilanie bateryjne CR2025)
Niezależna pamięć dziennika zdarzeń	Tak (500 wpisów pamięć EEPROM)

Czytnik RFID

Parametr	Wartość
Zasięg pola RF	5 cm
Typ obsługiwanych kluczy	NTAG 213/215/216 Ultralight EV1
Rodzaj obsługiwanych kluczy	Karty, breloki, znaczniki (naklejki)
Długość magistrali	1 m (max 1,5 m)

Zasilacz buforowy

Parametr	Wartość
Napięcie zasilania	15 V
Wydajność prądowa	1 A
Napięcie ładowania akumulatora	13,8 V
Rodzaj akumulatora	AGM 12V 7-14Ah, złącza konektorowe
Zabezpieczenie akumulatora	Bezpiecznik topikowy 1.0 A
Zasilacz sieciowy	15V/1A / 5.5/2.1 mm (+)
Ładowanie akumulatora	Automatyczne
Przełączanie źródeł zasilania	Płynne, bezstopniowe
	Wersja 2023SK32_01

Deklaracja zgodności UE https://dc-tech.pl/ce.html

CE

Aplikacja SLock w sklepie Gogle Play:

Produkt zaprojektowany i wykonany w Polsce C 2023 DK / DC-Tech